Expert Consensus on the Detection and Screening of Oral Cancer and Precancer

Shou Yen KAO1, Li MAO2, Xin Chun JIAN3, Gunaseelan RAJAN4, Guang Yan YU5

Oral cancer is an aggressive disease with a high incidence in both males and females in Asia and ranks as the first of all malignancies in India. The relatively high prevalence rate of oral cancer in Asia is mainly due to the fact that a high percentage of the population are smokers or chew betel nut. They comprised the so called ‘high risk population’ of oral cancer. Meanwhile, epidemiological surveys showed a much lower 5-year survival rate in patients with advanced TNM stage III and IV oral cancer than those in the earlier stage I and II disease after treatment. Therefore, it is important to identify and treat precancerous lesions and oral cancer at early stages. In this article, we describe the expert consensus contributed by outstanding clinicians and scientists at the 11th Asian Congress of Oral & Maxillofacial Surgery (ACOMS) and we highlight the importance of oral cancer screening by various conventional and novel methods based on scientific research.

Key words: Asia, betel nut, oral cancer, screening, smoking
in developing countries, more than 50% of oral cancer patients are diagnosed as stage III or IV during their first visit to a healthcare facility. Unfortunately, the overall 5-year survival rate of these patients will be poor despite recent advances in surgery, radiotherapy and chemotherapy. Furthermore, the cost of treatment in stage III or IV cases is far more than the cost of treatment in stage I or II cases. In the 11th Asian Congress of Oral & Maxillofacial Surgery (ACOMS) in Xi’an, China (Aug 22 to 25, 2014), an expert consensus on the detection and screening of oral cancer and precancer was conducted by outstanding clinicians and scientists from Asia and the United States. It was unanimously agreed that an efficient detection and screening programme allows the correct diagnosis of lesions at the pre-cancer stage or in early stages of oral cancer. Proper treatment can then be given to these patients to increase their survival. The Xi’an consensus highlights the importance of oral cancer and pre-cancer screening by various conventional and novel methods based on scientific research. This article reviews the related literature and discussions, which were addressed at the consensus meeting.

Screening the high risk population

Oral cancer is curable if it can be diagnosed and treated early enough. Amongst human cancers, oral cancer is one of few with a vast potential for early detection. Given the lack of successful strategies for oral cancer prevention so far, the priority should be focused on screening. The feasibility of oral cancer screening is largely based on the fact that the oral cavity can be easily accessed visually. Various programmes or policies have been supported by a number of governmental agencies worldwide for detecting oral cancer in the past decade. To cope with this, funding from these governmental agencies has been distributed to various organisations and healthcare professionals such as general health auxiliaries in the public first-line health care institute, dentists and ENT (Ear, Nose, and Throat) doctors in medical centers. However, the long-term effects of these efforts remains to be seen. Previous reports revealed that 90% of male oral cancer patients were betel quid chewers and smokers in South and Southeast Asia. Undoubtedly this high-risk group of betel chewers and smokers, accounting for the main prevalence of oral cancer should be screened with priority. Meanwhile, a follow-up system should be established to recall and monitor the patients with oral cancer or with precancer lesions after diagnosis and treatment because of the high incidence of second primary tumours in oral cancer patients and high malignant transformation rate of patients with precancerous lesions.

Malignant transformation of precancerous lesions

Attention should specifically be focused on patients with precancerous lesions. Although the potential of malignant transformation for patients with erythroplakia is higher than patients with leukoplakia, oral leukoplakia is far more common. Some of the patients are idiopathic while the others exhibited habits such as smoking tobacco, drinking alcohol or using BQ. About 80% of patients with leukoplakias are in fact at low risk of developing OSCC with no evidence of dysplasia in the lesions, whereas others may eventually transform into OSCC. Unfortunately, there is currently no histological or alternative means which can reliably predict which leukoplakia is indeed premalignant. Overall the rate of malignant transformation of oral leukoplakia is about 3% to 6% over 10 years, although much higher rates have been reported, which is largely dependent on the populations surveyed and the rigour of follow-up care performed. Medical management of leukoplakia includes reducing or quitting habits related to risk factors, increasing the intake of fruit and vegetables in the diet, lesion removal and possibly the use of active agents. Retinoids, carotenoids and topical cytotoxic agents have been tried to treat oral leukoplakia and to prevent OSCC development with limited success. Newer therapies developed from frontier and novel research are still on the horizon.

Roles of healthcare workers

Healthcare workers or auxiliaries need to clearly understand their roles in cancer screening. One may argue that oral cancer screening is not necessary because routine dental examinations already include a full oral mucosa examination. However, apart from the fact that more than 50% of the adult population do not visit a dentist annually in many developing countries, there is evidence which suggests that many oral cancer cases are missed by healthcare professionals including dental practitioners. Many reasons may contribute to this outcome including the inability to recognise early lesions, the innocuous appearance of the lesions or lesions without morphological changes before the development of invasive cancers, plus a lack of experience from clinicians. Therefore, other professions or specialties should also be included in the screening programme. Nevertheless, screening for oral cancer can be a simple and non-invasive procedure, which can be integrated into
the comprehensive assessment of older patients or high-risk populations who account for the major part of the oral cancer patients. Furthermore, other medical specialties might feel comfortable performing an oral cancer screening examination13,14,18-20. Since 5-year survival rates are far greater in individuals with localised OSCC than in those with metastatic diseases, the detection of early oral cancer can make a significant difference for patients’ outcomes21. The elderly, who are at risk of oral cancer might visit their dentists far less frequently than they visit their physicians20. The primary physicians examine sore throats routinely. Therefore, taking a few extra minutes to do a thorough oral examination may help improve early detection of oral cancer. If primary care physicians can join in the routine screening of oral cancer, long-term survival rates of oral cancer patients may improve as more early oral cancers can be detected.

Methods of screening

Numerous reports have documented methods of oral cancer detection and screening14,18-22. Physical examination includes a self-examination and clinical examination. Clinicians have a responsibility to perform a thorough head and neck examination as part of the physical assessment of their patients. It takes less than 2 min to perform. The goal of the examination is to detect any nodules, swellings, mucosa alterations (ulcerations, textural or colour changes) and unexplained lymph adenopathy. While many routines exist for an oral examination, each clinician must develop his or her own method, use it in all patients, and carefully document positive findings. Toluidine blue staining is an easy simple method with the dye showing affinity to cancerous mucosa or lesions with dysplastic changes. A commercial kit with a protocol is available for large-scale screening of high-risk populations or in clinical patients by topical application or mouth rinsing. Yet for candidates who have field cancerisation in the oral cavity, rinsing or gargling is recommended. However, there is a significant percentage of false negative and false positive results that exist23. Meanwhile, a biopsy is still needed before a diagnosis can be confirmed. An excision biopsy is typically sufficient for pathological analysis of small 0.5 to 1.0 cm lesions. However, incision biopsy at multiple locations may be necessary for large lesions. For most cases encountered, there was no definite location of lesion but there was panoral premalignant cancerisation in high-risk patients with a history of BQ use and who had smoked over a 20 to 30 year period11,14. It can be difficult to perform an incision biopsy at precisely suspected locations in such conditions. Therefore, some researchers or clinicians advocate the use of an alternative method for screening, by collecting exfoliated cells through tissue scraping. However, exfoliated cell cytology in the screening for oral cancer has never achieved the same success as it has for diagnosing cancer of the uterine cervix. Oral exfoliated cell cytology enjoyed much attention in the 1960s, eventually falling out of favour, due largely to the subjective nature of its interpretation. Yet the application of quantitative and immunocytochemical techniques has, to some extent, refined its potential role. However, the absence of a validated marker, present in all malignant lesions but never seen in benign lesions, limits its clinical utility14,20. The other drawback of exfoliated cell cytology for screening oral cancer is that the location of cancerous lesions may be difficult to identify, and to allow biopsy and pathological confirmation. Technical problems may also be easily encountered in cases with field cancerisation in the BQ chewers11,12,23. Saliva being secreted from the major or minor salivary glands without cellular content was considered to have no value for cancer detection. However, saliva containing the exfoliated cells from scraping or natural exfoliation combined with cytospin may improve its value in oral cancer detection. Utilising cytospin preparation from the saliva may potentially increase the collected cellular content for analysis. However, unlike alpha-fetoprotein (AFP) for hepatoma, protein specific antigen (PSA) for the prostate or specific biomarkers for other cancers, no specific marker, which has received universal acceptance from the scientific community, are available for the detection of oral cancer. It may well be accepted that a more scientific and efficient way of oral exfoliated cell cytology might offer greater success, based on the understanding of the molecular mechanism and characteristics of cancer development. The future role for oral exfoliated cell cytology – bleak or bright – remains to be determined.

Mechanisms of oral cancer formation

Analogous to a well-established colorectal carcinoma model, oral cancer is also considered to be a multi-hit process involving a number of aberrant genetic and epigenetic events culminating during the tumorigenic process. It is well known that following the action of various carcinogens (chemical, physical, biological) on normal cells, a long period (latency) of several months to years (10 months to 30 years) in humans occur between the development of precancerous cells and their transformation into cancer cells. However, the molecular and biological events that take place within the precancerous cells during this quiescent stage are not yet fully under-
stood. Many studies revealed that development of pre-cancerous cells and their transformation into cancer cells are determined initially by genetic (oncogenes and anti-oncogenes) changes including multiple somatic mutations as well as epigenetic alterations, in order to impact cellular factors such as hormones, growth factors (GFs), cytokines, vitamins and prostaglandins (PGs). These factors can markedly change the evolution of preneoplastic cells by enhancing, retarding or inhibiting their transformation into cancer cells, or even reversing them into a normal phenotype. These effects act on DNA, RNA and protein synthesis, as well as on cell replication, cell cycles, cell surfaces and intercellular communications. Therefore, these abnormal DNA, oncogenes or tumour suppressor genes, and ultrastructural intracellular or cell surface antigenic determinants as potential biomarkers are essential for the early detection of preneoplastic cells and cancer cells. Although, a universal tumour marker might still be lacking, a combination of several markers may be useful and more accurate than ever. In particular, the last 20 years has seen a shift in diagnostic methods from the histopathological to the molecular level. It is expected that oral exfoliated cell cytology may not only assume a greater role by providing samples of DNA for genetic analysis but also can provide a useful tool for screening.

New markers and tools for oral cancer detection

Over the past four decades, given that the 5-year survival rate has not improved for oral cancer patients, we believe the research priorities should explore the mechanism to find out new approaches for early diagnosis and novel therapy. With improved understanding of the underlying molecular features and biology in oral tumorigenesis, new biomarkers and molecular targets for oral cancer have been identified in the last decade. Significant momentum has been devoted to the exploration in Ras oncogenes, p53, p16 tumour suppressor genes, abnormal expression of other genes such as cyclin-D1, retinoids or retinoic acid nuclear receptors, telomerase, and more recently the identification of common genetic alterations of PI3K and Notch1 genes.

The follow-up of treated oral cancer cases is equally important to the screening of fresh cancer cases. Different from laryngeal or hypopharyngeal cancers, the predisposed relapse or recurrence of oral cancers tends to occur in the oral cavity. Beyond conventional staining dye by direct visual detection, the use of narrow band imaging (NBI) was recently proposed as a useful method for early detection of precancer and recurrent or second primary lesions in treated cancer cases. With the great advancement in understanding cancer development, subsequent generations of cancer screening methods will favour a more efficient and reliable tool based on previous contributions of scientists. The newly developed microarray/gene chip technology with more reliable/predictable tumour markers will encourage us to seek new approaches for cancer screening. Recent novel research reports suggest the potential importance of new biomarkers of micro-RNAs in the cancer progression. Two important new biomarkers miRNA-21 and miRNA-31 have recently been found to increase in the plasma and saliva of oral cancer patients. The levels of miRNA-31 in the plasma and saliva, especially, correlate well with a tumour burden. In other words, the biomarker miRNA-31 in plasma and saliva significantly decreases after tumour ablation surgery. The levels of miRNA-21 and miRNA-31 not only increase in invasive oral cancer, but also in oral precancer lesions. This highlights a breakthrough in the early detection of oral precancer/cancer from saliva/plasma.

We propose that the early detection and screening of cancer is an ongoing battle which should be fought on all fronts with the full support and cooperation of governmental agencies, school educators, the mass media, medical professionals and the general public.

References